SO2-induced stability of Ag-alumina catalysts in the SCR of NO with methane

نویسندگان

  • X. She
  • M. Flytzani-Stephanopoulos
  • C. Wang
  • Y. Wang
  • C.H.F. Peden
چکیده

We report on a stabilization effect on the structure and activity of Ag/Al2O3 for the selective catalytic reduction (SCR) of NOxwith CH4 imparted by the presence of SO2 in the exhaust gasmixture. The reaction is carried out at temperature above 600 8C to keep the surface partially free of sulfates. In SO2-free gases, catalyst deactivation is fast and measurable at these temperatures. Time-resolved TEM analyses of used samples have determined that deactivation is due to sintering of silver from well-dispersed clusters to nanoparticles to micrometer-size particles with time-on-stream at 625 8C. However, sintering of silver was dramatically suppressed by the presence of SO2 in the reaction gas mixture. The structural stabilization by SO2 was accompanied by stable catalyst activity for the NO reduction to N2. The direct oxidation of methane was suppressed, thus the methane selectivity was improved in SO2-laden gas mixtures. In tests with high-content silver alumina with some of the silver present in metallic form, an increase in the SCR activitywas found in SO2-containing gasmixtures. This is attributed to redispersion of the silver particles by SO2, an unexpected finding. The catalyst performance was reversible over many cycles of operation at 625 8C with the SO2 switched on and off in the gas mixture. 2008 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective Catalytic Reduction of NOx with Methane over Ag-alumina Catalysts in High-content SO2 Gas Streams

In this work, we investigated the performance of Ag-alumina catalysts for the SCR of NO with methane in gas streams with a high concentration of SO2, typical of coal-fired power plant flue gas. Agalumina catalysts were prepared by co-gelation and nitric-acid leaching was used to remove weakly bound silver species from the catalyst surface [1, 2]. We found that SO2 has a dramatic inhibitory effe...

متن کامل

Catalytic reduction of SO2 with CH4 to elemental sulfur: A comparative analysis of alumina, copper-alumina and nickel-alumina catalysts

The catalytic reduction of sulfur dioxide with methane to form elemental sulfur has been studied. Al2O3, Cu-Al2O3 and Ni-Al2O3 were examined as catalysts and their performances were compared in terms of SO2 conversion and selectivity. Performance of the catalyst extremely enhanced when nickel and copper were added as promoters. The effects of temperature, SO2/CH4 molar ratio, and reaction...

متن کامل

The role of Ag–O–Al species in silver–alumina catalysts for the selective catalytic reduction of NOx with methane

We examined the role of silver and alumina in Ag–alumina catalysts for the selective catalytic reduction (SCR) of NOx by methane in gas streams containing excess oxygen. A cogelation technique was used to prepare Ag–alumina materials with high dispersion of silver even at high metal loadings (>10 wt%) and after air calcination at 650 ◦C. Typically, a part of silver is present as fine nanopartic...

متن کامل

Carbon Nanotubes Synthesis by Chemical Vapor Deposition of Methane over Zn – Fe Mixed Catalysts Supported on Alumina

Carbon nanotubes were synthesized over a series of Zn-containing Fe/alumina catalysts by chemical vapor deposition method at two reaction temperatures of 850 and 950 °C using methane as a carbon source. Catalysts were synthesized by keeping Fe concentration constant and varying Zn concentration to study the effects of Zn. The catalysts were characterized using X – ray powder diffraction and N2 ...

متن کامل

NO reduction by CH4 in the presence of excess O2 over Pd/sulfated zirconia catalysts

The selective catalytic reduction (SCR) of NO by methane in the presence of excess oxygen has been studied on a series of Pd catalysts supported on sulfated zirconia (SZ). This support is not as sensitive to structural damage by steaming as the acidic zeolites, such as H-ZSM-5 and H-Mor. In previous studies, it was shown that this type of acidic zeolites are able to stabilize Pd2+ ions and prom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009